

. TOP simulation & reconstruction

Simulation (not Gean)

- Input: particles from a MC generator or single tracks/event generated randomly in Ω and p < 5 GeV/c
- Tracks propagated to TOP in a magnetic field of 1.5T
 - > no multiple scattering, no secondaries
 - \triangleright 10 ps (r.m.s) T_0 uncertainty
- Cherenkov photons: emitted randomly along track helix inside Q-bar; propagated along the Q-bar including reflection on focusing mirror
- Uncorrelated background: 20 hits/bar-side/50ns
- PMT response (assume GaAsP, 50ps TTS)
- Electronics response
 - > simple CFD model (delay=500ps)
 - > multi-hit TDC (1024ch, 50ps/ch, 5 ns double-pulse resolution)

Reconstruction

- Extended max. likelihood, with analytically derived likelihood function
- Likelihood function adopted to focusing TOP (cylindrical or spherical mirror)

- At December SuperKEKB meeting:
 - ▷ linear optics used in MC for photon reflection at the mirror
- Replaced now with the true reflection on sphere (cylinder)
- For reconstruction:
 - Inear optics still good for cylindrical mirror
 - ▷ but next order corrections must be used for spherical mirror
- Pulls (TTS of PMT not included):

Some performance degradation possibly due to mirror optical aberrations

 $K - \pi$ separation

Some performance degradation possibly due to mirror optical aberrations

Comparison with Inami-san (1-readout spherical)

Comparison with Inami-san (1-readout spherical)

 $B \to K\pi, \pi\pi$

Number of generated decays:

$$B^0 \to \pi^+ \pi^ B^0 \to K^+ \pi^-$$

 No. of decays
 5007
 20008

 \bullet ~66% decays inside TOP geometrical acceptance

• After pion selection (for both tracks: $\mathcal{L}_{\pi} > \mathcal{L}_{K}$):

TOP configuration	$B^0 o \pi^+\pi^-$	$B^0 \to K^+ \pi^-$
2-readout type	2957	58
3-readout type	2862	88
2-readout cylindrical	2953	59
2-readout spherical	2957	106
1-readout cylindrical	2940	133
1-readout spherical	2950	172

note: non-Gean simulation

Conclusions _

- Construction of likelihood function for focusing TOP:
 - ▷ for cylindrical focusing mirror linear optics OK
 - b for spherical focusing mirror next order corrections used;
 - modeling still not perfect (pull=1.2) impact to performance
- Comparison to Imani-san: agreement not very good; hard to find the reasons.
 maybe we should exchange our simulated data
- ★ $B^0 \rightarrow \pi^+\pi^-$: surprisingly, 2-readout non-focusing type seems to perform the best (?).

Next step: write reconstruction in C++

_ backup slide: $B \to K\pi, \pi\pi$ _____

	B^0 -	$\rightarrow \pi^+\pi^-$		B^{0} –	$\rightarrow K^+\pi^-$	
	angular	active	PID	angular	active	PID
TOP configuration	coverage	area	effi.	coverage	area	effi.
	%	%	%	%	%	%
2-readout type	66.6	90.3	98.1	65.6	90.7	0.5
3-readout type	66.6	87.4	98.2	65.6	87.3	0.8
2-readout cylindrical	66.6	89.7	98.7	65.6	89.9	0.5
2-readout spherical	66.6	89.7	98.8	65.6	89.9	0.9
1-readout cylindrical	66.6	90.3	97.6	65.6	90.7	1.1
1-readout spherical	66.6	90.3	97.9	65.6	90.7	1.4

backup slide: TOP configurations

- Different geometry configurations studied; parameters according to sBelle Design Study Report
- Quartz bars (18 segments in ϕ at R = 118 cm)
 - \triangleright dimensions: 261 cm \times 40 cm \times 2 cm
 - \triangleright non-splitted or splitted at 47.8⁰
 - with cylindrical or spherical mirror
- MCP-PMT's:
 - ▷ GaAsP, >400 nm filter, 35% collection efficiency
 - \triangleright 4 \times 4 pads; pad size 0.55 mm
 - \triangleright PMT size 27.5 mm \times 27.5 mm
 - ▷ 14 pieces fitted to Q-bar exit window

Backward	 Forward

- 2-readout type
- 3-readout type
- 2-readout focusing type
- 1-readout focusing type